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A b s t r a c t - - A  duplex consists of a series of imbricate faults that are asymptotic to a roof thrust and a floor thrust. 
Depending on the final orientations of the imbricate faults and the final position of the branch lines, a duplex may 
be hinterland-dipping, foreland-dipping, or an antiformal stack. The exact geometry depends on various factors 
such as the initial dimensions of the individual slices (horses), their lithology, the amount of displacement 
(normalized to size of horse) on each fault, and the mechanics of movement along each fault. 

The energy required in duplex formation can be determined by calculating the total work involved in emplacing 
each horse: this is given by 

W t = Wp + W b + W~ + W~, 

where Wp is the work involved in initiating and propagating a fracture. W h is the work involved in basal sliding, 
which may be frictional or some form of ductile flow, W~ is the work done against gravity during the emplacement 
of the horse, and IV, is the work involved in the internal deformation of the horse. 

By calculating and comparing these work terms it is possible to predict the conditions under which the different 
types of duplexes will form. Normally, the development of a hinterland-dipping duplex is most likely. However, 
if deformation conditions are favorable, displacements on individual imbricate faults may be very large compared 
to the size of the horses, leading to the formation of either antiformai stacks or foreland-dipping duplexes. 

INTRODUCTION 

A DUPLEX fault zone consists of two parallel thrust faults 
(the roof and floor thrusts) bounding a family of sub- 
sidiary contraction faults which curve asymptotically 
into the roof and floor thrusts. Alternatively, a duplex 
may be defined as an imbricate family of horses (Boyer 
& Elliott 1982). Duplexes have characteristic internal 
features (Fig. 1): (1) beds within each horse trace out an 
elongate antiform-synform pair; (2) bedding near the 
inflection point within each horse is parallel to the 

sidiary faults; (3) bedding above and below the duplex is 
relatively undisturbed and (4) for long distances the 
same stratigraphic horizon may compose the hanging- 
wall of the roof thrust or the footwall of the floor thrust. 

A duplex fault zone forms by sequential imbrication in 
the direction of tectonic transport (Boyer 1978, Boyer & 
Elliott 1982, fig. 19). Each imbricate fault branches from 
the floor fault along a trailing branch line and rejoins the 
roof fault along a leading branch line (Boyer & Elliott 
1982, Hossack 1983) (Fig. 1). As each new imbricate 
fault forms, the previous imbricate fault is deactivated 
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Fig. I. Initial and deformed stages in formation of a duplex (modified after Boyer & Ell iott 1882). Dimensions'shown are 
initial length ( ( )  and stratigraphic thickness (t) within each horse, initial fault spacing s, initial duplex length Lo, 
deformed duplex length L.'. shortening distance Z, structural thickness H', final angle between floor fault and imbricates, 
(B'),  final fault spacing s', and displacement on each fault (u), Also shown are the trailing branch line (TBL) and the 

leading branch line (LBL) for the last horse before and after motion on the last thrust. 
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Fig. 2. Classification of different types of duplexes (modified after 
Boyer & Elliott 1982). 
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Fig. 3. Change in duplex geometry with initial fault spacing, keeping 
displacements on individual faults constant, s is the initial spacing 

between imbricate faults, and u is the displacement on each fault. 

and carried passively with the enclosing thrust sheet. 
The imbricate faults transfer slip away from a strati- 
graphically lower glide horizon to a stratigraphically 
higher glide horizon. Displacement on each subsidiary 
(imbricate) thrust is minor compared to that on the roof 
and floor thrusts. These displacements move the branch 
lines closer together during formation of a typical hinter- 
land-dipping duplex (Fig. 2). If displacements on imbri- 
cate thrusts are large enough, branch lines coincide or 
bunch up, and an antiformal stack is formed (Boyer & 
Elliott 1982). With even larger displacements on indi- 
vidual imbricate thrusts, each branch line passes over 
and beyond the underlying one, producing a foreland- 
dipping duplex (Boyer & Elliott 1982). 

Details of the dimensions and internal geometry of 
duplexes have been previously discussed by Boyer & 
Elliott (1982), who derived relationships (Boyer & 
Elliott 1982, eqs 1-8) between initial (Lo) and current 
(L') duplex length, shortening distance (X), structural 
thickness (H') ,  cross-section area (A), initial strati- 
graphic thickness within each horse (t), bed length within 
each horse (~), current angle between floor fault and 
imbricate faults (fl'), current perpendicular distance 
between imbricate faults (h'), and current spacing be- 
tween imbricate faults measured parallel to the floor 
thrust (s') (Fig. 1). If we denote the initial spacing 
between the imbricate faults, measured parallel to the 
floor thrust, as s, and the displacement on each imbricate 
fault as u (Fig. 1), we can describe some additional 
geometric characteristics of duplexes. 

For u < s, the duplex is hinterland dipping. 
For u = s, the structure is an antiformal stack. 
For u > s, the duplex is foreland dipping. 

Thus there is a continuous transition between the differ- 
ent types of duplexes depending on the relative mag- 
nitudes of fault spacing and displacements on individual 
faults. 

If the displacement on individual imbricate faults is 
held constant, then it can be shown by simple geometric 
construction (Fig. 3) that decreasing fault spacing (i.e. 
shorter imbricate slices) will result in a change from a 
hinterland-dipping duplex to an antiformal stack, and 
finally to a foreland-dipping duplex. 

If on the other hand, initial spacing between imbricate 
faults is held constant (i.e. imbricate slices of constant 
size), then increasing displacement on individual faults 
will result in transition from a hinterland-dipping duplex 
to an antiformal stack, and finally to a foreland-dipping 
duplex (Fig. 4). An ideal foreland-dipping duplex with 
parallel roof and floor thrusts is produced when the 
displacement is twice the initial fault spacing. 

Under natural conditions of deformation, neither 
fault spacing nor displacement on individual faults 
remains constant throughout a duplex. Relative mag- 
nitudes of fault spacing (s) and displacement (u) may 
change along strike resulting in change from a hinter- 
land-dipping duplex to an antiformal stack as in the 

s:4 .5  

J \~ -. U-2-4 

,•l U - 4.5 

u- 6-5 

Fig. 4. Change in duplex geometry with variation in displacement on 
individual faults, keeping initial spacing between faults constant, s is 
the initial spacing between imbricate faults, and u is the displacement 

on each fault. 
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footwall of the Moine thrust (Elliott & Johnson 1980, 
figs. 4, 12, 18 and 24, Boyer  & Elliott 1982, figs. 14 and 
23) and the footwall of the Ben More thrust (Coward 
1984, fig. 3). If the changes in relative magnitude of 
spacing "(s) and displacement (u) are even larger, it may 
result in a transition from a hinterland-dipping duplex to 
a foreland-dipping duplex as in the Mountain City win- 
dow in Tennessee (Boyer  & Elliott 1982, Diegel 1986) 
(Fig. 5a). Fault spacing (s) and displacement (u) may 
also change during progressive development  of a duplex. 
If u/s decreases, the duplex may show continuous transi- 
tion from an antiformal stack to a hinterland-dipping 
duplex as in the forward part of the Haig Brook duplex 
(Fermor  & Price 1976) (Fig. 5c); or a folded duplex 
formed by some other  means !e.g. a blind imbricate 
complex underneath)  may lose its folding as the duplex 
continues to develop, as in the forward part of the Mt. 
Crandell duplex (Boyer  & Elliott 1982) (Fig. 5b). If u/s 
increases during duplex development ,  the duplex struc- 
ture may change from a hinterland-dipping duplex to an 
antiformal stack as in the middle part of the Haig Brook 
duplex (Fig. 5c), or even to a foreland-dipping duplex as 
in the southern part of the Mountain City window 
duplex (Diegel 1986) (Fig. 5a). 

The spacing between imbricate faults (s) and the dis- 
placement on each fault (u) depend on the mechanics of 
fault growth and fault motion,  and are determined by 
the relative energy requirements for these processes. 
These energy requirements  and other  energy terms 
important  in duplex growth will now be discussed. 

MECHANICS OF DUPLEX DEVELOPMENT 

Gre tener  (1972) suggested that thrust faulting is a 
self-perpetuating process; the emplacement  of one 
thrust sheet sets up conditions that favor the initiation of 
a new thrust fault. This concept applies to the formation 
of duplex imbricates as well. Once a duplex zone is 
initiated, the duplex will advance and grow until the 
deforming stresses are removed or become too weak to 
induce movement .  

Why does a duplex zone develop in some situations, 
when a single fault may account for all the slip in other  
situations? The answer probably lies in the mechanics of 
fault motion. A fault zone in a weak glide horizon can 
accommodate  large strains at constant low stresses. 
Thus,  very large displacements can be achieved along 
fairly narrow fault zones (Schmid 1983, Mitra 1984). The 

glide horizon may be a lithologically weaker layer (e.g. 
shale, coal, salt). Alternatively, it may develop as a 
strain softening zone due to a change in the dominant 
deformation mechanism resulting from grainsize reduc- 
tion during progressive deformation;  this may be 
achieved under both ductile (Schmid 1983) and brittle 
(Mitra 1984) conditions, as long as the grainsize is 
reduced beyond a certain limit. 

If a fault ramp forms, it does so by the fault climbing 
out of a glide horizon, through a more competent  unit, 
into a higher glide horizon. While deformation within 
the glide horizon is ductile, deformation within the 
competent  unit may be dominantly brittle. In this case 
grainsize reduction along the fault zone in the competent  
unit is controlled by the Hall-Petch relation (Mitra 
1978), an inverse relationship between stress and grain- 
size. Thus, deformation along the fault zone in the 
competent  unit may actually be a strain-hardening pro- 
cess, so that displacement along this zone becomes 
increasingly difficult with progressive strain. Eventually 
a second ramp fault forms, along which slip is transferred 
from the lower glide horizon to the higher glide horizon. 
Successive development  of new ramp faults requires less 
energy than continued movement  on a single, strain- 
hardening fault, and thus a duplex zone develops. 

The conditions under  which the different types of 
duplexes will evolve can be defined by evaluating the 
energy requirements  for alternative paths during duplex 
development.  Following the principle of minimum work 
(Nadai 1963), at each stage, the path which requires the 
least work will be the favored path. This principle 
assumes stable equilibrium, and can also be extended to 
problems involving quasi-static deformation where the 
system passes through a series of equilibrium states 
(Martin 1975). Most deformation at geologic strain-rates 
is essentially quasi-static, involving, for example,  negli- 
gibly small radiational and inertial components  (which 
we have ignored in our equations).  Two special cases are 
useful to consider, namely the transition from hinter- 
land-dipping duplex to antiformal stack, and the transi-  
tion from antiformal stack to foreland-dipping duplex. 

Case I: Transition from a hinterland-dipping duplex to an 
antiformal stack 

Consider a duplex structure after the formation of 
three imbricate slices with u < s (Fig. 6). Within the 
duplex the section has been doubled in the area overlying 
the footwall step. Continued movement  can now occur 

Fig. 5. Examples of changes in duplex geometry within thrust belts: (a) Mountain City window with the northern cross-section (AB) showing 
a hinterland-dipping duplex (after Boyer & Elliott 1982). and the southern cross-section (CD) showing a forward-dipping duplex (after Diegel 
1986); both sections show approximately 15.7 km of total translation along imbricate faults. Section AB has a mean fault spacing (~) of 4.8 
km, mean fault translation (~) of 2 km and mean u/s of 0.41. Section CD has ~ = 2.3 km, ~ = 2.6 km and mean u/s = 1~2. (b) Mount Crandell 
duplex (after Boyer & Elliott 1982) shows the development of an antiformally folded duplex due to large displacement of one small horse and 
the presence of an underlying blind imbricate complex. Folding is lost in the front of the duplex as fault spacing increases abruptly. (c) Haig 
Brook duplex (after Fermor & Price 1976) shows across strike change in geometry. Fault spacing is remarkably uniform, with a mean spacing 
of 85 m. The middle part shows change from a hinterland dipping duplex to an antiformal stack due to a sudden increase in displacement on 
faults (mean u/s changes from 0.7 to 1.2). The forward part of the duplex shows transition back to a hinterland dipping duplex, as fault spacing 

increases, and mean u/s decreases to 0.4. 
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A ~ .: .... ~ 
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Fig. 6. Uppe r  section shows a duplex with three imbricates.  Con- 
t inued m o v e m e n t  may proceed by fur ther  d isplacement  on the last 
formed imbricate (path A) or by format ion of a new imbricate fault 

(path B). 

along two different paths. Movement  may proceed along 
the existing floor fault, resulting in the folding of earlier 
formed imbricates (path A). Or, a new fault may form at 
the base of the footwall step (path B). The path which is 
selected will be the one that involves the least expendi- 
ture of work. For  the continued development  of a hinter- 
land-dipping duplex, path B is favored. If path A is 
favoured an antiformal stack develops. 

The total work, Wt, performed in the development  of 
a duplex fault structure can be subdivided into four parts. 

Wt = W p +  Wb + W g +  Wi, (1) 

where Wo is the work performed in initiation and propa- 
gation of imbricate faults; Wb is the work needed to 
overcome resistance to sliding along the base of the 
faults; Wg is the work required to move the thrust masses 
up-section against the force of gravity and W~ is the work 
consumed in the internal deformation of the horses, 
which includes both folding within the sheet (Wk), as 
well as overall simple shear of the sheet (Ws), i.e. Wi = 
Wk + W~. 

We start with an imbricate structure made up of three 
slices (Fig. 7). An additional displacement, u, is added 
by two alternative paths: path A which involves con- 
tinued movement  on the last imbricate fault formed and 
resultant folding of pre-existing imbricate slices, or path 
B where movement  is transferred to a new imbricate 
fault. 

/ "N 

B 

,~Wg A = 2,~W~" 
Fig. 7. Upper  section shows a duplex with three imbricates.  Addi- 
tional d isplacement  (u) is achieved by cont inued movemen t  on last 
imbricate (path A) or by formation of and m o v e m e n t  on a new 
imbricate (path B). Shaded port ions of graphs  at right represent  
cross-sectional area of the mass  moved up-section against  gravity: 
this area is raised twice as high in A a s i n  B. indicating that twice as 
much gravitationzil work (AW~) is performed.  Open  stars represent  
da tum above which mass moved is raised. Distance between open 

and closed stars is the height through which mass  is raised. 

The total increment of work performed during dis- 
placement u is denoted by AWt and will be calculated for 
a cross-sectional slice of unit width perpendicular  to the 

For path A no new thrust is created and propagated.  

AW~ = o. (2) 
For path B work must be done so that a new thrust 

surface can initiate and propagate.  In addition, a zone of 
cataclasite or mylonite develops along the fault zone; 
this grainsize reduction requires additional work to 
create the new surface area. 

AWpB = Se'p" 1 + Se 'Av 'p .a¢"  1, (3) 

where S~ is the surface energy per unit area, p is the 
down-dip length of the fault, Av is the new surface area 
per unit volume created in the rock during grainsize 
breakdown and ac is the thickness of the cataclasite or 
mylonite zone. 

Elliott (1976b) defined basal sliding work in such a 
way that it occurs only along the thrust, a two dimen- 
sional surface of zero thickness. It is given by 

AW b = C . % . p . u .  1, (4) 

where C is an averaging factor which accounts for the 
amount  of slip that may be added by simple shear as the 
thrust climbs section, % is the basal shear stress and u is 
the displacement. 

During the increment of movement ,  u is the same for 
both cases, and the fault lengths (p) are the same. Both 
C and rb may vary, but are approximately the same order  
of magnitude in the two cases, so 

awb, -~ awb. (5) 
Work performed against gravity can be calculated by 

observing the change in mass above a given datum 
(Fig. 7). The reference line was chosen to be the top of 
the thrust faulted section prior to the increment of 
deformation.  The right hand side of the diagram (Fig. 7) 
shows the cross-sectional area of the total material 
moved against gravity; only the mass within the duplex is 
considered. After  an increment of displacement, u, the 
material above the datum has been increased by the 
amount  shown by the stippled area. The amount  of work 
performed against gravity during this increment is given 
by 

AWg = p .A .h .g.  1, (6) 

where p is the rock density, A is the cross-sectional area, 
h is the height through which the mass is raised and g is 
gravitational acceleration. Since displacement is the 
same for paths A and B, the cross-sectional area, and 
thus the mass of material added, is the same for paths A 
and B (Fig. 7). The height through which the mass is 
raised can be measured in terms of the vertical distance 
between two horizons that were at the same level before 
faulting (distance between open and closed stars). It is 
found that 

h B = ½h A (7 )  

and 

aw¢~ = 2 a % .  (8) 
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Fig. 8. Approximation of the internal work by kinking for path A 
and path B. Rocks of the hangingwall pass through a standing kink 
band at the footwall ramp (as shown in upper left inset). The number 
of the kink planes that a body of rock has passed through is indicated 
by shading. More work is involved in path A than path B. See text 

for discussion. 

Less easily estimated is the work (Wi) expended in 
internal deformation of the horses. As a first approxima- 
tion this can be subdivided into work due to kinking 
within the sheet, and work due to simple shear of the 
sheet as a whole. A rough estimate can be made of the 
kinking work in the following way. In each case the 
thrust mass is divided into subareas based on the number 
of kink planes a given volume of rock passes through 
(Fig. 8). In a simple thrust sheet there is one kink plane 
at the base of the footwall step and one at the top of the 
step. These kink planes set up a standing wave through 
which rocks of the hanging wall pass. In the area of the 
footwall step the work done in kinking any horse is given 
by (see Appendix) 

AWk = r12"~ Ai" tan 0j , (9) 
i=1 

where r1: is the interbed shear stress, n is the number of 
subareas into which the horse is subdivided, a i is the 
cross-sectional area of each subarea, p is the number of 
kink planes each body of rock has passed through and 0j 
is the angle through which the rocks have been kinked. 
For the entire duplex, made up of m horses, the work 
done in kinking is given by (see Appendix) 

Wk = rt2"~] A i ' ~  tan 0 i • (10) 
1 L i=1 j=l 

Calculating the work for path A and path B, it was found 
that 

WkA = 1.55WkB. (11) 

Equation (11) is probably an underestimate for Wk~ 
since path A probably involves significantly larger 
amounts of work. This is because the process of folding 
part of a pre-existing imbricate stack involves transfer- 
ring slip between imbricate fault planes and the bedding 
planes within imbricate slices. This slip transfer is easier 
if bedding is perfectly parallel to the imbricate faults, but 
this is not the case in path A. Bedding within the 
individual imbricate slices is folded, so that it is locally 

parallel to the imbricate faults, but meets the imbricate 
faults at high angles in other places. Therefore. slip is not 
easily transferred from one imbricate fault to another, 
making continued movement on an existing fault easier 
than movement on a new one. It is reasonable to con- 
clude that if we consider the average work per imbricate 
slice (AWk) along the two paths, 

AWk~ > AWk. (12) 

In addition to the folding of beds within each imbricate 
sheet, the rocks within each sheet undergo large amounts 
of simple shear deformation, particularly in a narrow 
zone close to the thrust plane. The motion of a thrust 
sheet deforming under brittle conditions (such as the 
Cumberland Plateau sheet in the Tennessee Appa- 
lachians, and the Copper Creek and Hunter Valley 
sheets east of the Pine Mountain Block in Virginia) can 
be shown to be approximately plastic (Wojtal 1982). 
Thrust" sheets at much higher metamorphic grades are 
also emplaced as perfectly plastic sheets as shown by 
their deformation profiles. A sheet's deformation 
profile, in simplest terms, is described by the change in 
shape of a material line that started out being perpen- 
dicular to the thrust fault (Wojtal 1982). An excellent 
example is the Sfirv thrust sheet in the Swedish 
Caledonides where deformed dikes that were originally 
perpendicular to the thrust are now asymptotic to the 
thrust along a thin basal zone (Gilotti & Kumpulainen 
1986). Deformation as a perfectly plastic sheet results in 
a very highly sheared basal layer, with an abrupt transi- 
tion into an almost undeformed upper section. In a 
strain-hardening thrust sheet, the thickness of the basal 
sheared layer increases linearly with displacement under 
both brittle (Robertson 1982, 1983) and ductile (Mitra 
1979) conditions; it is therefore possible to determine 
the shear strain (7) if the displacement (u) is known. 

The work done in shearing the basal layer is 

W s = r b ' y ' p ' t b ' l ,  (13) 

where y is the shear strain given by 
b/ 

3, = - -  (14) 
.t b 

and tb is the thickness of the basal deformed zone. For 
path A, displacement continues along the same fault for 
two increments of motion, leading to a basal layer that is 
twice as thick as in path B. 

U 
AWsA = " % ' - ~ b "  p ' 2 t  b • 1, (15)  

u 
AWs.  = T b ' - ' p ' t  b ' t b  I (16) 

and 
AWsA = AWs, for basal shearing. (17) 

For continued imbrication to be favored, the total 
work in path B must be less than that in path A; that is, 

(awp + a w  u + awg + a w  k + aws)~ 

< ( A W p + A W b + h W ~ +  AW k + AWs)A. (18) 

Substituting results obtained from equations (2), (5), (8) 
and (17), this condition simplifies to 

a w , .  + awk.  - awg. < awk,  (19) 
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Fig. 9. Upper section shows a duplex with coinciding branch lines giving rise to an initial antiformal stack. Additional 
displacement (u) is achieved by continued movement on last imbricate (path A), or by formation of and movement on a 
new imbricate (path B). Shaded portions of graphs at right represent cross-sectional area of the mass moved up-section 
against gravity. Path B involves a larger amount of gravitational work. Open stars represent datum above which mass 
moved is raised. Distance between open and closed stars is the height through which mass is raised. See text for 

discussion. 

or, for continued imbrication,  

AWpB- AWg~< 1. 
±wk~ - AWk. 

An antiformal stack would be favored if 

AWp, - AWg. > 1. 
a w ~  - hWk. 

(20) 

(21) 

Case H: Transition from an antiformal stack to a 
foreland-dipping duplex 

Now consider a duplex structure after the format ion 
of three horses,  where the trailing branch line of the 
last-formed imbricate thrust coincides with the trailing 
branch line of the preceding thrust (i.e. u = s). Con- 
t inued movemen t  can again take place along two differ- 
ent paths. 

Movement  may continue along the existing fault 
plane, carrying the trailing branch line of the last-formed 
imbricate thrust over  and beyond the trailing branch line 
of the next (future) thrust (path A).  This would produce 
an ideal forward-dipping duplex (as shown by Boyer  & 
Elliott 1982, fig. 24) only if the total displacement  of  the 
trailing branch line is twice the thrust spacing (u = 2s) 
i.e. u = s for the increment  of deformat ion  we are 
considering here. Somewhat  smaller displacements 
would also produce forward-dipping duplexes, but these 
would have some characteristics of an antiformal stack, 
with the roof  thrust being convex with respect to a planar 
floor thrust. 

The alternative to path A is the format ion of a new 
fault at the base of the footwall step (path B). A displace- 
ment  u -- s along this new fault would produce the same 
slip transfer  from floor thrust to roof  thrust as path A, 
but would result in further deve lopment  of the anti- 
formal stack that existed before this increment  of defor- 
mation.  

The favored path would be the one involving the least 
expenditure of work. The total increment  of work per- 

formed during displacement u is denoted as before by 
AW t, which (using eqn 1) is given by 

AW t = AWp + AW b + AWg + AW~, (22) 

where the four parts are, work to initiate and propagate  
a fault (AWp), work in basal sliding (AWb), work against 
gravitational forces (AWg), and work in internal defor-  
mation (AWi) involving work due to folding (AWk) and 
work due to simple shear of the sheet (AWs). The 
increment  of work (AWt), for a cross-sectional slice of 
unit width perpendicular  to the diagram, is calculated 
for the two possible paths. 

For path A, no new thrust is created and propagated  

AWp, = o. (23) 

For path  B a new fault is formed,  and the work needed 
for this is given, as before (eqn 3) by 

AWp, = So'p" 1 + S~.Av.p.a .  1, (24) 

where the first term on the right hand side is the work 
done in initiation and propagat ion of the new thrust 
surface, and the second term is the work done in 
developing the zone of cataclasite or mylonite that is 
produced along the thrust. 

Basal sliding work is calculated as before (eqn 4) as the 
work due to sliding on a two-dimensional surface of zero 
thickness (Elliott 1976b). It is approximate ly  the same 
for the two cases and is given by 

AWb, = AW~ B = C-~-b-p .u .  1. (25) 

Work per formed against gravity can be calculated by 
determining the change in mass above a datum (Fig. 9). 
The reference condition was chosen as the configuration 
before the last increment  of deformation.  The cross- 
sectional area of the total mass moved  against gravity is 
shown in the right hand diagram (Fig. 9); only the mass 
within the duplex is considered. The geometry  shown is 
constructed using a fault-bend fold model (Suppe 1983), 
but the complexity of the structure produced suggests 
that other  configurations are possible depending on 
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A 

2 

3 

4 

5 

Fig. 10. Approximation of the internal work by kinking for path A 
and B. The number of kink planes a body of rock has passed through 
is indicated by shading. Path B involves more work. See text for 

discussion. 

close to the thrust plane. The thickness of this basal 
deformed zone increases with displacement (Robertson 
1983). The work done in shearing the basal layer is, 

A W  s = 7 b ' Y ' l ' t  b • 1 ,  (32) 

where the shear strain is given by 

u 
y = - - -  (33) 

lb 

As before (eqs 15 and 16), the thickness of the basal 
deformed zone in path A is twice that in path B because 
of the larger accumulated displacement along a single 
fault in path A. Hence, for the last increment of displace- 
ment that we are considering 

u 
AW~ = rU.-~-b, p.2tu. 1, (34) 

relative proportions of bedding-plane slip and fault- 
plane slip, and on how closely real structures follow kink 
geometries used in the fault-bend fold model. After the 
last increment of deformation, the material above the 
datum is increased by an amount shown by the stippled 
areas. The work performed against gravity during this 
increment is given by 

AW~ = p . A . h . g . 1 .  (26) 

The added cross-sectional area in path B has an irregular 
shape, and has to be divided into subareas which have 
been raised through different heights. 

AWg, = ~ /9.Ai.hi.g-1. (27) 
i=I 

It is found that 

AWe, --~ 1.47 AWg. (28) 

The work expended in internal deformation of the 
horses includes work involved in folding and simple 
shear of the sheet, and is quite difficult to determine in 
this case, because of the complicated folding that indi- 
vidual horses undergo along both paths. However, the 
folding work can be estimated by assuming kink geome- 
tries developed by fault-bend folding (Suppe 1983). In 
each case, the thrust mass is divided into subareas based 
on the number of kink planes a given volume of rock 
passes through (Fig. 10). For the entire duplex, the work 
done in kinking is given as before by 

Wk ~ "r12" E A i. P = tan 0 i • (29) 
t k i=1 

It is found that in forming the entire duplex, 

Wk, = 1.16W.A. (30) 

However, if we look at the deformation due to the last 
increment of displacement (u = s) that we are consider- 
ing, 

AWk, = 1.42 ~Wk . (31) 

The rocks within each imbricate sheet also undergo 
large amounts of simple shear deformation, particularly 

and 

u 
~W~, = %'--~h'p'th'l (35) 

AWsA = AWsB for basal shearing. (36) 

For continued imbrication, and hence stacking, to be 
favored the total work in path B must be less than that in 
path A; i.e. 

(AWp + AWb + AWg + ±w~ + AWs)B 

< (AWp + 2xWb + AW e + 2xW k + AW~)A. (37) 

Substituting results obtained from eqs (23), (25), (28) 
and (36), this condition simplifies to 

AWpB + AWk. < AWk~ - 0.5 JXWg~ ' (38) 

or  

hWpB + AWk~ < 1 (39) 
hWkA -- 0.5 aWe~ 

for an antiformal stack. 
A forward-dipping duplex would be favored if 

AWpB + AWkB > 1. (40) 
AWk~ -- 0.5 AWe~ 

E S T I M A T E S  O F  W O R K  T E R M S  

The work terms used in the above analysis can be 
roughly quantified from field data to gain some under- 
standing of the conditions under which the different 
duplex types may form. Similar estimates for energies 
involved in growth of and movement on large thrust 
faults were previously made by Elliott (1976b), using the 
McConnell thrust in the Canadian Rockies as an exam- 
ple. Wiltschko (1979b) also used energy estimates to 
determine the partitioning of forces in thrust sheet defor- 
mation for the Pine Mountain block in the Appalachians. 
Our estimates are based to some extent on Elliott's 
analysis, but take into account more recent work that we 
have done on thrust faults• The calculations are done for 
a near-surface duplex with fault spacing s = 5 km involv- 
ing a stratigraphic section of 2--4 km. 
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(a) Nucleation of  a thrust surface (b) Propagation of  a thrust surface 

Under  semi-brittle to ductile conditions the nucleation 
of cracks in grains is dislocation controlled (Lawn & 
Wilshaw 1975). These cracks usually grow in adjoining 
grains and eventually coalesce to form a fracture. The 
stresses necessary for crack nucleation can be repre- 
sented by the Hal l -Petch relation 

o" n = or  o + A D  - I /2 ,  (41) 

where D is the average grain size of the rock; A is an 
unpinning constant for dislocations given by 

A - 7rVr~ ( 8SdxD / '/2 (42) 
8 ~ 1 r g - - - U ) L /  ' 

where S e is the surface energy per unit area, /~ is the 
shear modulus, u is Poisson's ratio and L is the size of 
dislocation pile-ups within grains; and 0% is the 'friction' 
stress resisting dislocation motion, given by 

o% = --~ exp (43) 

where K -- 1 for edge dislocations, and a and b are 
spacings between atoms in two directions. 

The crack is nucleated by a pile-up of n dislocations 
where 

¢rLo'K 2Lo" 
n - = (44) 

/xb /zb 

Since crack nucleation occurs at 10-2-10 -3 of the 
theoretical strength, it requires a pile-up of 102-103 
dislocations. The crack width is then given by 

c = n .  b = 10 3. b meters. (45) 

b is typically 10 -9 m for rock-forming minerals and hence 
c = 10 -6 m. The work required for a crack to nucleate is 

D 2 
W. = 7r .----~- • or.. c ,  (46) 

where o-~ is given by eqn (41). Typically, for rocks/x is 
2 x 10~°-4 x 10 '0 Pa; theoretical estimates for Se range 
from 0.1 to 1 Jm -2 for most materials (Paterson 1978) 
but rock forming minerals usually have S e between 1 and 
10 Jm -2 (e.g. quartz 0.4-1 Jm -2, orthoclase 7.7 Jm -2, 
Brace & Walsh 1962); Poisson's ratio (u) for both 
sedimentary rocks and granitic basement rocks ranges 
from 0.2 to 0.4 (Birch 1966). Substituting these values 
into equation (46), 

0 2 
W° = rr---~--- 10-°(10 ~ + 10°D -I /2)  J 

--  ~ ( D  2" 10 2 + O 3/2) J (47) 
4 

For typical grainsize, D = 10-2-10 -4 meters, W~ ts 
negligibly small, particularly when it is compared to 
work involved in propagating a fracture. 

For a fault developed under  ductile conditions of 
deformation,  a bead of ductile rock exists along the tip 
line (Elliott 1976b). Rocks within this bead will deform 
so long as the long-term ductile yield strength of the rock 
is exceeded (Elliott 1976a). As the thrust propagates,  
this ductile bead sweeps out a volume of rock ahead of 
the propagating fracture. This entire volume of rock 
must have reached the finite strain necessary to induce 
ductile fracture. Assuming a simple shear deformation,  
the work Wp necessary to push this ductile zone ahead of 
a slice 1 km wide is 

Wp = ~ .Tr . r y . y f . a .p .  1000 J, (48) 

where the long-term yield stress (rv) was estimated to be 
2 x 107 Pa by Elliott (1976a). Other  estimates of the 
differential stress in thrust sheets undergoing ductile 
deformation (based on dislocation densities, sub-grain- 
size and recrystallized grainsize) generally range from 
107 tO 108 Pa (see Schmid 1983). In metals undergoing 
plastic deformation,  rupture occurs by necking when the 
work-hardening rate equals the effective stress (Ander-  
son et al. 1974); the effective strain at necking is 0.1-0.3 
(Anderson et al. 1974) corresponding to maximum shear 
strains (yf) of 0.2-0.6 (Ford & Alexander  1977). Equiva- 
lent plastic strains at fracture in torsion tests on metals 
are approximately 0.5 (McClintock & Argon 1966), 
although they may vary considerably depending on 
deformation conditions. Elliott (1976b) estimated yf at 
thrust tips in the Foothills and Front Ranges of the 
Canadian Rockies to range from 0.1 to 1, depending on 
the size and asymmetry of flexural slip folds preserved at 
the tips of thrusts of all sizes. Spratt (oral communica- 
tion) determined both brittle and ductile strains at the 
tips of five thrusts that terminate in crinoidal and oolitic 
limestones in the Front Ranges of the Canadian Rockies. 
She found that natural octahedral unit shears (7oct) 
never exceed 1.4, corresponding to a maximum shear 
strain ('yf) of 1.7 (Ford & Alexander  1977). Elliott 
(1976b) estimated the thickness of the deforming bead a 
to be - 1 kin, and the down-dip length of the fault p --- 5 
km for most duplexes (Boyer  1978). Using Elliott 's 
stress estimate and assuming "/t = 1.5, we get 

Wp = 6 × 101~ J, (49) 

For faulting under brittle conditions, a similar ductile 
bead forms at the thrust tip (Irwin-Dugdale crack-tip 
models) where the rock yields due to stress concentra- 
tions at the crack tip (Ewalds & Wanhill 1984). In 
addition, the fault zone usually develops as a zone of 
close spaced fractures: major  motion along the fault 
then takes place along this granulated zone. The work in 
propagating the fault thus involves work necessary to 
push the ductile bead ahead of the fault (similar to eqn 
49), and work needed in granulating rock along the 
fault. For a slice of 1 km width, the latter is 

Wp = 7r.a~,.p. I()00-A,-S~. J. (50)  

The down-dip length of the fault:, p = 5 km. The 
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thickness of the granulated zone (in a strain hardening 
situation) is ac - 0.1u (Robertson 1983); the displace- 
ment (u) on a fault in a duplex may be up to 2.5 km 
(Boyer  1978) so that ac -- 0.25 kin. The surface area per 
unit volume A, = 5 x 102 m -1 (Mitra 1980, in prepara- 
tion). Surface energies (Se) for rocks are generally orders 
of magnitude larger than those for single crystals; typical 
values are 10 Jm -2, although they may range up to 100 
Jm -2 (Paterson 1978). Substituting these values into 
eqn. (50) 

Wp ~ 1.9 x 1013 J .  (51)  

(c) Sliding on thrust surface 

Although the amount  of sliding on the thrust is the 
same along either path in both the cases we have consi- 
dered,  it is instructive to evaluate the work involved in 
this process to compare it to the other  work terms. 
Elliott (1976b) evaluated the sliding work assuming that 
it occurs on the thrust plane, a two-dimensional surface 
of zero thickness. For a slice that is 1 km in width, the 
work in sliding is 

Wb = C ' % ' u ' p "  1000 J. (52) 

C - 1 is a constant that accounts for the thrust gaining or 
losing displacement up and down the dip of the fault. 
The basal sliding stress was estimated to be 5 x 106 Pa by 
Elliott (1976b) for the McConnell  thrust sheet in the 
Canadian Rockies. Stress-grainsize relations have been 
used to estimate fault-zone stresses as 106 Pa in the 
superplastic Lochseiten mylonite along the Glarus thrust 
in the Swiss Alps (Schmid, unpublished manuscript),  
and as 3 x 106 Pa in the cataclasites along the brittle 
White Rock thrust in the Wind River range of the Rocky 
Mountains (Mitra 1984). The down-dip length of the 
fault p = 5 km for duplexes, and the displacement u may 
be up to 2.5 km for the faults in a duplex (Boyer  1978). 
From these values, 

W b ----- 5 × 1016 J.  (53) 

J Topographic Surface ~ - ~ - ' "  -. 

~ h  d u d I 

Fig. 11. Gravitational work performed by formation of and move- 
ment on a new imbricate fault. (a) Topographic surface above duplex 
having two imbricates. (b) The addition of a new imbricate alters the 
surface. The stippled area is the material added to the surface, h is 
the height through which the mass is raised against gravity, dL is the 
depth of the lower glide horizon, and d~ is the depth of the upper 

glide horizon. For discussion, see text. 

For  a stack, h = 6 km and 

AWg A = 4.2 x 1017 J. (56) 

If, on the other  hand, we consider a duplex forming at 
the erosional surface, 

aWg A = 2AWgB = 1 . 3 x  1017J. • (57) 

In Case II, considerably more mass is moved. For 
path A, cross-sectional area A = 3.75 x 106 m 2, for path 
B, A -- 3.25 x 106 m 2. For  a lower glide horizon at a 
depth of 5 km the mass is raised approximately 5.5 km 
along path A and 

AWgA -- 5.75 x 1017 J. (58) 

The mass is raised approximately 6.5 km along path B 
and 

AWg B - 6.3 x 10 I7 J. (59) 

If, on the other  hand, we consider a duplex forming at 
the erosional surface, 

AWg B = 1.5 AWg. -- 2.3 x 1017 J. (60) 

(d) Work against gravity 

The work performed against gravity to emplace an 
imbricate slice of width 1 km is 

W e = p . A . h . g . 1 0 0 0  J. (54) 

The average density (p) of near surface rocks is 2.85 × 
103 kg m -3 and the acceleration due to gravity g is 9.8 m 
s-2 The height, h, that the excess cross-sectional mass is 
raised against gravity is equal to the depth to the lower 
glide horizon which we have chosen to be --5 km (Fig. 
1 i) ,  but may vary considerably in individual duplexes. 
The cross-sectional area of the mass moved against 
gravity varies from one situation to another.  

For Case I, cross-section area A = 2.5 × 106 m 2, and 
hence, 

hWg B -- 3.5 x 10 Iv J. (55) 

(e ) Internal deformation of imbricates 

The work done in internal deformation of the imbri- 
cates is more  difficult to estimate than the other  work 
terms. Although different deformation mechanisms may 
be operating depending on the metamorphic  conditions 
under  which the rocks are deforming (Elliott 1976b), 
and the detailed geometries of structures in the thrust 
sheet may be quite complicated, on a gross scale much of 
the work goes toward two main processes: flexural-slip 
folding within the sheet, and simple shear of the sheet 
which is generally concentrated toward the bot tom of 
the sheet. It is not possible to model exactly the compli- 
cated internal geometry of  a thrust sheet, and any esti- 
mates of the internal deformation work term will be only 
as good as the model used. In order  to simplify the 
calculations, we have estimated the work involved in 
folding by using a simple kink-folding model.  More  
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detailed analyses of the bending of a thrust sheet at a 
ramp have been published by Wiltschko (1979a). We 
have calculated the work involved in the overall simple 
shear of the sheet assuming that the sheet ts perfectly 
plastic, so that overall simple shear within the sheet is 
confined to a basal layer. Even though this basal layer 
may be made up of thin deformation zones along which 
much of the slip is concentrated,  the simple shear can be 
integrated over the entire basal layer without changing 
the results. 

For  the simplest duplex geometry  (i.e., a hinterland- 
dipping duplex) each imbricate sheet can be subdivided 
into segments that have passed through a certain number  
of kink planes. Assuming a cross-sectional slice that is 
1 km wide, the work in kinking each imbricate sheet is 

A W  k = r12 A i tan 0j . (61) 
i=1 = 

For an entire duplex made up of m horses, 

W k = 712 A i ~ tan 0j , (62) 
1 i=l  j = l  

where the long-term yield strength of the sheet gives 
z12 = 2 × 107 Pa (Elliott 1976a). If we choose a ramp 
angle of 30 °, the rocks are kinked through 0 = 30 ° at 
each kink plane. For a duplex made up of three horses 
we find 

Wk = 1.5 × 1017 J. (63) 

The average work per imbricate fault is then 5 × 1016 J. 
For a duplex made up of four horses, 

Wk = 2.1 × 1017 J. (64) 

The work per imbricate is then 5.2 × 10 ~6 J. Hence,  as 
the duplex grows, the average work per slice increases. 

Internal deformation by folding is most intense and 
complicated in the case of an antiformal stack. For a 
stack with four horses, the total work is 

Wk = 4.2 × 1017 J. (65) 

The work per imbricate sheet is 1.05 x 1017 J. For a stack 
with three horses, 

Wk = 3.44 × 1017 J. (66) 

The work per sheet is 1.5 × 10 Iv J. These work terms are 
approximately twice as large as those for hindward- 
dipping duplexes. Generally,  the folding work terms are 
comparable to the overall simple shear term. 

The overall simple shear within the sheet can be 
modelled as homogeneous  simple shear within a basal 
layer whose thickness is approximately 0.1 of the dis- 
placement along the fault (Robertson 1983, Mitra 1979). 
Assuming a cross-sectional slice that is 1 km wide for 
each imbricate fault, 

b/ 
A W ~  ---- 7 b - Z .  p - t  b • 1 0 0 0  J .  (67) 

For an imbricate fault within a typical duplex the down- 
dip fault length (p) is 5 km and the displacement (u) is 
2.5 km (Boyer  1978). For a weak basal zone ~'h is the 

same as the strength of the basal layer ( - 5  × 106 Pa) 
giving 

Ws = 6.25 × 1016 J. (68) 

For  a strain softening basal layer z b must be the same as 
the long-term yield stress (% = 2 × 107 Pa) at the start of 
deformation,  but may decrease as deformation pro- 
gresses. Hence the simple-shear work may be as high as 

Ws -- 2.5 × 10 I7 J. (69) 

Thus the average total internal work per imbricate sheet 
in a duplex is approximately 3 × 1017 J. This is probably 
a gross underest imate,  considering our simplified model 
for internal deformation within the sheet. Elliott (1976b) 
estimated the internal work within the body of the 
McConnell  thrust sheet, which isdisplaced 40 km, to be 
6.4 × 1019 J. His estimate was based on the difference 
between external work provided and internal work 
expended within the system. To achieve the same dis- 
placement as the McConnell  thrust along a duplex zone 
our  model would require the development  of 16 horses, 
and a total internal work of approximately 0.5 × 10 ~ J. 
This is certainly close to Elliott 's estimate, considering 
the two estimates were made using totally different 
approaches. The correct answer may lie somewhere 
between these two estimates. 

DISCUSSION AND CONCLUSIONS 

Estimates of the work terms indicate that apart from 
fracture nucleation work (which is negligible compared 
to the other  work terms), the work terms involved in 
duplex development  are within two orders of magnitude 
of one another.  Since individual work terms depend on 
material properties of the rocks (such as long-term yield 
stress %, surface energy S e, basal sliding stress 7~ and 
density p), the relative magnitudes of the work terms 
may change depending on variations in material proper- 
ties of the rocks. Such variations in material properties 
may take place as a result of facies changes parallel or 
perpendicular  to strike of a thrust belt. Alternatively, 
changes in metamorphic  conditions during progressive 
deformation may cause changes in the material proper- 
ties. The dominant deformation mechanism may also 
change during progressive deformation as grainsize or 
mineral assemblage changes along a fault zone. 

The estimated work terms may be substituted into the 
two special transitional cases considered earlier in this 
paper. For Case I, the transition from hinterland- 
dipping duplex to antiformal stack, it is found that 

AWp, - AWg B _~ 1.4 × 10 -I ~ 1. 
AWk" -- AWk. 

This suggests that generally a hinterland-dipping duplex 
is favored energetically; it is also the type of duplex that 
is most commonly found. If movement  on the faults is 
large (for example,  if the fault is in an easy glide horizon 
and accumulates large displacements) the branch lines 
may coincide. We then have to consider Case II, the 
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t r a n s i t i o n  f r o m  a n t i f o r m a l  s t a c k  to  f o r e l a n d - d i p p i n g  

d u p l e x :  fo r  th is  c a s e ,  it is f o u n d  t h a t  

AWv,  + AWk~ = 1.5. 

AWk,  - 0.5 AWg~ 

T h i s  s u g g e s t s  t h a t  s l igh t  v a r i a t i o n s  in w o r k  t e r m s  m a y  

g ive  r ise  to  e i t h e r  an  a n t i f o r m a l  s t a c k  o r  a f o r w a r d -  

d i p p i n g  d u p l e x .  

T h i s  a n a l y s i s  o f  d u p l e x  d e v e l o p m e n t  is b a s e d  o n  t h e  

s i m p l e s t  d u p l e x  g e o m e t r i e s  a n d  fa i r ly  s i m p l e - m i n d e d  

d u p l e x  d e v e l o p m e n t  h i s t o r i e s .  I t  c o u l d ,  o f  c o u r s e ,  b e  

e x t e n d e d  to  m o r e  c o m p l i c a t e d  g e o m e t r i e s  a n d  to  m o r e  

r ea l i s t i c  g e o l o g i c  s i t u a t i o n s ,  if m o r e  r e l i a b l e  d a t a  on  

g e o l o g i c  h i s t o r y ,  g e o m e t r y  a n d  m a t e r i a l  p r o p e r t i e s  w e r e  

a v a i l a b l e .  
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.APPENDIX 

Work involved in kinking a thrust sheet at a ramp 

Consider a single thrust-sheet climbing section through a competent 
unit. The thrust is assumed to be parallel to bedding in the lower and 
upper flats. A standing kind-band is set up in the area overlying the 
footwall ramp (Fig. 8). The advancing thrust sheet must pass through 
this kink-band, first being kinked at an angle equal to the ramp slope 
and then being kinked back to the horizontal at the top of the step. 
Thus, the material on the upper flat is kinked twice, while the material 
on the lower flat has not been kinked; inclined bedding overlying the 
ramp has been kinked only once. Assuming kink folding and its 
attendant flexural slip to be the dominant deformation processes, the 
work consumed can be estimated. 

Figure 12(a) shows a section of fiat-lying bedding (of length 1o, and 
thickness t) about to enter the kink plane at a ramp where the ramp 
angle is 0. The kink plane bisects the obtuse angle between bedding 
and the footwall ramp, so that bedding thickness remains the same 
after kinking. After a portion of the rock mass has passed through the 
kink (Fig, 12b), bedding within the kink-band is inclined at an angle 0. 
Strain within the kink-band is assumed to occur by bedding-plane slip 
and is calculated as follows. 

Along the upper bedding surface 

AB + BC + CD = lo. (1) 

Along the lower bedding surface 

E F +  FG + GH + HJ = lo. (2) 

Since AB = EF and BC = HJ 

CD = FG + GH = d. (3) 

This is the distance that the upper bedding surface moves forward 
with respect to the lower bedding surface, resulting in rotation ofDJ (a 
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Fig. 12. (a) A section of flat-lying bedding, of length l o and thickness t about to enter  the kink plane at a ramp with ramp- 
angl e 0. (b) After  a portion of bedding has passed through the kink plane, the bedding within the kink band is inclined 
at angle 0. The bedding makes an angle tb = 90 - 0/2 with the kink plane. The upper bedding surface has moved forward 

through a distance d with respect to the lower bedding surface. 

line originally perpendicular to bedding) through an angle ~b. The 
shear strain y is then given by 

d 
y = - = t a n  ~b. ( 4 )  

t 

The angle (4~) between bedding and the kink plane is given by 

1 8 0 -  0 0 
~ , - - -  - 9 0 - - .  ( 5 )  

2 2 

FI~G = GI~H = 0 (6) 
2 

and 

From(3)  and (7) 

F rom(4)  and (8) 

o r  

,7, 

2t an( ) 

y =  t a n ~ b = 2 t a n ( 2  ) .  (9) 

[ (0)]  10, = tan -I 2 t a n  ~ - 

For most thrust faults O ~< 30 ° and for these angles, 

-~ > 0.9. (11) 
0 

Substituting in (4), 

y = t a n  & ( 1 2 )  

The work per unit volume is given by 

W = r t 2 " Y  ----- r lz- tan 0. (13) 

The work in kinking a slice of cross-sectional area A and unit width 
parallel to strike within the kink band overlying the footwall ramp is 
given by 

Wkl = %2"tan O.A.  1. (14) 

The material in the upper flat (Fig. 8) has gone through two kink 
planes, at each one of which it is bent through an angle 0. The work 
done on this material is 

Wk2 = 2 . r l2 . t an  O.A.,. 1. (15) 

Therefore ,  for the entire thrust sheet,  work done in kinking is 

Wk = Wkl + Wk2 = r~z-tan O A I  + 2rl2 . t a n  O . A  2 (16) 

In the most general case, the bending angles 0 at successive kink 
planes are not necessarily the same, and hence. 

Wk = r12"At'tan 01 + r12"A2(tan Oi + tan 02), (17) 

o r  

In a duplex, each imbricate thrust sheet (horse) is kinked as it is 
emplaced. In addition, parts of each horse are unkinked or kinked 
again when succeeding horses are emplaced. The mass within each 
horse can be divided into subareas (n), based on the number of kink 
planes (p)  each volume of rock has passed through. The total work for 
m horses is 

Wk = ~ rlz[At(tan 01 + ' "  + tan Or, ) + . - -  
[ 

+ A,( tan  01 . . . .  + tan 0p)], (19) 

o r ,  

W k = rt2. A~. tan Oj . 
I ~=1 

(20) 


